Công thức leibniz tính đạo hàm cấp cao

     
Bài viết này thosanhuyenthoai.vn ra mắt đến độc giả phương thức Tính đạo hàm cùng vi phân cao cấp của hàm số

*

1. Một số bí quyết đạo hàm V.I.P của hàm số thường gặp

$eginarrayl y = sin (ax + b) Rightarrow y^(n)(x) = a^nsin left( ax + b + fracnpi 2 ight)\ y = cos (ax + b) Rightarrow y^(n)(x) = a^ncos left( ax + b + fracnpi 2 ight)\ y = frac1ax + b Rightarrow y^(n)(x) = frac( - 1)^na^n.n!(ax + b)^n + 1\ y = e^ax + b Rightarrow y^(n)(x) = a^ne^ax + b.\ y = (ax + b)^alpha Rightarrow y^(n)(x) = a^nalpha (alpha - 1)...(alpha - n + 1)(ax + b)^alpha - n endarray$

2. Công thức Lepnit tính đạo hàm V.I.P của hàm số tích

Cho những hàm số $y=u(x),y=v(x)$ bao gồm đạo hàm mang lại cung cấp $n$ khi đó $left< u(x).v(x) ight>^(n)=sumlimits_k=0^nC_n^ku^(k)(x)v^(n-k)(x).$

3. Các ví dụ minc hoạ

Câu 1. Tính đạo hàm $f^(50)(x)$ với $f(x)=(2x^2+x+1)e^5x+2.$

Giải. Ta có:

$eginarrayc f^(50)(x) = sumlimits_k = 0^50 C_50^k(2x^2 + x + 1)^(k)(e^5x + 2)^(50 - k) .\ = 5^50(2x^2 + x + 1)e^5x + 2 + 50(4x + 1)5^49e^5x + 2 + 1225.4.5^48e^5x + 2. endarray$

Câu 2. Cho hàm số $f(x)=dfrac1+xsqrt1-x.$ Tính $f^(100)(0).$

Giải. Ta có

$eginarrayl f(x) = dfrac1 + xsqrt 1 - x = dfrac2 - (1 - x)sqrt 1 - x = 2(1 - x)^ - dfrac12 - (1 - x)^dfrac12.\ f^(100)(x) = 2left< ( - 1)^100left( - dfrac12 ight)left( - dfrac12 - 1 ight)...left( - dfrac12 - 99 ight)(1 - x)^ - dfrac12 - 100 ight>\ - left< ( - 1)^100left( dfrac12 ight)left( dfrac12 - 1 ight)...left( dfrac12 - 99 ight)(1 - x)^dfrac12 - 100 ight>\ = dfrac3.5...1992^99(1 - x)^ - dfrac2012 + dfrac3.5....1972^100(1 - x)^dfrac1972. endarray$

Do đó $f^(100)(0)=dfrac3.5...1972^100(199.2+1)=399dfrac(197)!!2^100,$ trong các số đó $(2n+1)!!=(2n+1)(2n-1)...5.3.1;(2n)!!=2n(2n-2)...6.4.2.$

Câu 3. Tính $f^(100)(x)$ biết $f(x)=x^2cos x.$

Giải. Ta có:

$eginarrayc f^(100)(x) = sumlimits_k = 0^100 C_100^k(x^2)^(k)(cos x)^(100 - k) \ = x^2cos left( x + frac100pi 2 ight) + 100.2x.cos left( x + frac99pi 2 ight) + 4950.2.cos left( x + frac98pi 2 ight)\ = x^2cos x + 200xsin x - 9900cos x. endarray$

Câu 4.

Bạn đang xem: Công thức leibniz tính đạo hàm cấp cao

Tính đạo hàm cao cấp $y^(5)(x)$ của hàm số $y=ln (2x^2-x).$

Giải. Ta có: $y"=dfrac4x-12x^2-x=dfrac4x-1x(2x-1)=dfrac42x-1-dfrac1x(2x-1)=dfrac42x-1-left( dfrac22x-1-dfrac1x ight)=dfrac22x-1+dfrac1x.$

Vậy $y^(5)(x)=left( dfrac22x-1+dfrac1x ight)^(4)=2dfrac2^4(-1)^44!(2x-1)^5+dfrac(-1)^44!x^5=24left( dfrac32(2x-1)^5+dfrac1x^5 ight).$

Câu 5. Tính đạo hàm cấp cao $f^(100)(0)$ của hàm số $f(x)=dfrac1x^2-x+1.$

Giải. Ta có:

$eginarrayl f(x) = frac1left( x - frac12 ight)^2 + frac34 = frac1left( x - frac12 ight)^2 - left( fracsqrt 3 2i ight)^2 = frac1sqrt 3 ileft( frac1x - frac12 - fracsqrt 3 2i - frac1x - frac12 + fracsqrt 3 2i ight).\ f^(100)(x) = frac1sqrt 3 ileft( frac( - 1)^100100!left( x - frac12 - fracsqrt 3 2i ight)^101 - frac( - 1)^100100!left( x - frac12 + fracsqrt 3 2i ight)^101 ight)\ f^(100)(0) = frac100!sqrt 3 ileft( frac1left( - frac12 - fracsqrt 3 2i ight)^101 - frac1left( - frac12 + fracsqrt 3 2i ight)^101 ight) = frac100!sqrt 3 i( - sqrt 3 i) = - 100! endarray$

Bước cuối độc giả cố gắng dạng lượng giác số phức vào để rút ít gọn.

Xem thêm: Lời Bài Hát Người Tình Mùa Đông Như Quỳnh, Lời Bài Hát Nguoi Tinh Mua Dong

Cách 2:Ta tất cả $(x^2-x+1)y=1,$ đạo hàm cấp n hai vế có:

$eginarrayl (x^2 - x + 1)y^(n)(x) + n(2x - 1)y^(n - 1)(x) + n(n - 1)y^(n - 2)(x) = 0\ y^(n)(0) - ny^(n - 1)(0) + n(n - 1)y^(n - 2)(0) = 0 Leftrightarrow fracy^(n)(0)n! - fracy^(n - 1)(0)(n - 1)! + fracy^(n - 2)(0)(n - 2)! = 0\ u_n = fracy^(n)(0)n! Rightarrow u_n - u_n - 1 + u_n - 2 = 0.... endarray$

Câu 6. Tính đạo hàm V.I.P $y^(99)(0)$ của hàm số $y=arcsin x.$

Giải. Ta có:

$eginarrayl y" = frac1sqrt 1 - x^2 Rightarrow (1 - x^2)y" = sqrt 1 - x^2 \ Rightarrow - 2xy" + (1 - x^2)y"" = - fracxsqrt 1 - x^2 = - xy"\ Leftrightarrow (1 - x^2)y"" - xy" = 0. endarray$

Do kia $left( (1-x^2)y""-xy" ight)^(n)=0$ và

$eginarrayl (1 - x^2)y^(n + 2)(x) - n.2x.y^(n + 1)(x) - n(n - 1)y^(n)(x) - xy^(n + 1)(x) - ny^(n)(x) = 0.\ Rightarrow y^(n + 2)(0) = n^2y^(n)(0) Rightarrow y^(99)(0) = 97^2y^(97)(0) = ... = (97.95...3.1)^2y"(0) = (97!!)^2. endarray$

Hiện tại thosanhuyenthoai.vn gây ra 2 khoá học Tân oán cao cấp 1 với Toán thời thượng 2 giành cho sinh viên năm nhất hệ Cao đẳng, ĐH khối ngành Kinch tế của toàn bộ các trường:

Khoá học cung ứng đầy đủ kỹ năng và kiến thức cùng phương thức giải bài tập các dạng toán đi kèm theo từng bài học. Hệ thống bài tập rèn luyện dạng Tự luận gồm giải mã chi tiết trên trang web sẽ giúp đỡ học viên học tập nkhô hanh với áp dụng chắc hẳn rằng kiến thức và kỹ năng. Mục tiêu của khoá học góp học tập viên đạt điểm A thi cuối kì các học phần Toán cao cấp 1 với Toán thù thời thượng 2 trong số trường tài chính.

Sinch viên những ngôi trường ĐH dưới đây có thể học tập được full bộ này:

- ĐH Kinc Tế Quốc Dân

- ĐH Ngoại Thương

- ĐH Thương thơm Mại

- Học viện Tài Chính

- Học viện ngân hàng

- ĐH Kinh tế ĐH Quốc Gia Hà Nội

với những trường ĐH, ngành kinh tế của những ngôi trường ĐH khác trên khắp cả nước...